You're reading: Posts By Joshua Holden

“Pariah Moonshine” Part III: Pariah Groups, Prime Factorizations, and Points on Elliptic Curves

In Part I of this series of posts, I introduced the sporadic groups, finite groups of symmetries which aren’t the symmetries of any obvious categories of shapes. The sporadic groups in turn are classified into the Happy Family, headed by the Monster group, and the Pariahs. In Part II, I discussed Monstrous Moonshine, the connection between the Monster group and a type of function called a modular form. This in turn ties the Monster group, and with it the Happy Family, to elliptic curves, Fermat’s Last Theorem, and string theory, among other things. But until 2017, the Pariah groups remained stubbornly outside these connections.

“Pariah Moonshine” Part II: For Whom the Moon Shines

This post is part of a series of posts by guest author Joshua Holden.

I ended Part I with the observation that the Monster group was connected with the symmetries of a group sitting in 196883-dimensional space, whereas the number 196884 appeared as part of a function used in number theory, the study of the properties of whole numbers.  In particular, a mathematician named John McKay noticed the number as one of the coefficients of a modular form. 

“Pariah Moonshine” Part I: The Happy Family and the Pariah Groups

Being a mathematician, I often get asked if I’m good at calculating tips. I’m not. In fact, mathematicians study lots of other things besides numbers. As most people know, if they stop to think about it, one of the other things mathematicians study is shapes. Some of us are especially interested in the symmetries of those shapes, and a few of us are interested in both numbers and symmetries.