You're reading: Irregulars

Jos’ Perfect Cuboid

Inspired by our Open Season post on the Perfect Cuboid earlier this year, Aperiodical reader Jos Schouten wrote to us describing his work on the problem over the past 20 years. He’s looking for someone to help take his work further. Are you up to the challenge?

Survey of the Perfect Cuboid

This article is about my search for the Perfect Cuboid (PC), which started exactly on Wednesday April 15, 1987. At that time I was a young engineer with feelings for mathematics, and employed to write C-language programs on a UNIX platform. Since then I’ve written software and explored ideas to find the cuboid, at work and at home. I still haven’t found one!

This article is also hoping to find someone in the world community as sparring partner, who likes the subject, wants to propose additional solution methods, and can help to implement such a method. The attempt will be to find a perfect cuboid with an odd side less than a googol.

Statement of the Problem

The problem is easy to state, extremely difficult to solve, but a solution, once found, would be easy to verify.

The problem in words:

Find a cuboid whose sides are integer lengths, whose face diagonals are integers and whose space diagonal (from corner to opposite corner) is integral too.

Review: Wuzzit Trouble

Wuzzit Trouble screenshot

Only you can save the Wuzzit! Screenshot courtesy of Innertube Games.

Had Wuzzit Trouble been around in 2001, when I was teaching Diophantine equations… well, there wouldn’t have been an iPhone to play it on, and it would probably have been too graphically-intensive for the computers available at the time. However, I’m willing to bet fewer of my students would have fallen asleep in class.

Cushing your luck: properties of randomly chosen numbers

Long-time Aperiodical muse David Cushing has made a bet with us that he can give us an interesting post every Friday for the next ten weeks. Every week that he sends a post, we buy him a bar of chocolate. Every week that he doesn’t send us a post, he buys us a bar of chocolate. For his first trick, David is going to do some unnatural things with the natural numbers.

The greatest common divisor (gcd) of two or more integers is the greatest integer that evenly divides those integers. For example, the gcd of $8$ and $12$ is $4$ (usually written as $\gcd(8,12)=4$). Two integers are called coprime (or “relatively prime”) if their gcd is equal to $1$.

A reasonable question to ask is,

Given two randomly chosen integers $a$ and $b$, what is the probability that $\gcd(a,b)=1$?

Axes to Axes

In which the intrepid maths-crime-fighting duo of Gale and Beveridge find themselves thrust back to a time before people could do maths properly.


It had been a quiet night at the Aperiodical police station. Apart from a few cases of broken scheduling in Excel formulas – nothing a bit of TIME() in the cells wouldn’t put right – there was nothing.

At 11pm, the phone rang. I looked at Sergeant Gale. Sergeant Gale pointedly looked at the phone, raised an eyebrow, and returned to his sudoku.

“Maths Police, bad graphs department. Constable Beveridge speaking, how can I help?”

The Maths of Star Trek: The Original Series (Part I)

As you may well know, Star Trek was a science fiction TV show in the late 1960s. It featured futuristic technology and science fiction ideas such as warp drives, transporters, strange new worlds, time travel, and green alien space babes. And the possibility of all these things has, in the past, been discussed by experts, and nerds, in great detail. Especially that last one about green space babes.

But dammit, I’m a mathematician, not a physicist. So, instead of talking about the science of Star Trek yet again, what about the maths of Star Trek? After all, Star Trek is science fiction, but there is no such thing as maths fiction – so any mathematics featured on the show is sure to be on firmer ground. Right? Or as Spock himself says in ‘The Conscience of the King’;

SPOCK: Even in this corner of the galaxy, Captain, two plus two equals four.

Should we even expect much maths to feature on a simple space adventure show? In fact, many interesting mathematical ideas were raised during the show’s short run of 79 episodes, including; the probability we are alone in universe; a paradox that upset 20th century mathematicians as well as 23rd century androids; the mathematics of alien and Earth biology; and the most important question of all – when on a dangerous away mission, does the colour of your shirt really affect your chances of survival?