You're reading: Posts Tagged: modelling

HLF Blogs: Is mathematics idealistic or realistic?

In September, Katie and Paul spent a week blogging from the Heidelberg Laureate Forum – a week-long maths conference where current young researchers in maths and computer science can meet and hear talks by top-level prize-winning researchers. For more information about the HLF, visit the Heidelberg Laureate Forum website.

Stephen Smale

5th Heidelberg Laureate Forum 2017, Heidelberg, Germany, Picture/Credit: Christian Flemming/HLF

The closing talk of the HLF’s main lecture programme (before the young researchers and laureates head off to participate in scientific interaction with SAP representatives to discuss maths and computer science in industry) was given by Fields Medalist Steve Smale.

Pandemic – the app

BBC Pandemic app

As of Wednesday, 27th September, the BBC has launched a large-scale mass participation data gathering project called Pandemic. The aim of the project is to collect data about how people move around and interact with each other, and who they come into contact with. And they need you!

Maths at the British Science Festival 2016


Next week, the British Science Festival will take place in Swansea, in and around the University. Here’s our round-up of all the mathsiest of the maths events taking place during the week. Our own Katie Steckles will be there introducing most of these events, so you might spot her at the front telling you what to do if there’s a fire. You’ll need to register to book tickets, but all the events are free.

Mathematician wins ‘Oscar’

This year’s Oscars ceremony, which will take place on 22nd February, will honour those who’ve achieved greatness in film-making, performance, scoring, sound and production. You may not know that in addition to the main ceremony, the Academy also has an untelevised award ceremony taking place two weeks earlier, called the Academy Scientific and Technical Awards (nerd Oscars).

These awards recognise achievement in the field of scientific and technological advancements related to film-making, and have in the past been awarded to a variety of different advancements, including Dolby Surround Sound, the Xenon Arc lamp, IMAX and even Jim Henson’s animatronic muppet technology.

This year though, finally seeing sense, the Academy’s Technical Achievement award goes to a mathematician. Robert Bridson, who’s worked on CGI-heavy films including Gravity, The Hobbit: The Desolation of Smaug and The Adventures of Tin Tin, has been recognised for his work on “early conceptualization of sparse-tiled voxel data structures and their application to modelling and simulation.”

Why I like some bad maths stories

My two most recent posts here have been about a story reporting a coincidence as more exceptional that it is and ‘bad maths’ reported in the media. Both are examples of mathematical stories being reported in a way that is not desirable. Somehow, though, I like the whist story and dislike the PR equations. I have been thinking about why this might be the case.

The PR-driven, media-friendly but meaningless equations from the first article are annoying because they present an incorrect view of mathematics and how mathematics can be applied to the real world. Applications of mathematics are everywhere and compelling, yet the equations in these sorts of equations seem to present little more than vague algebra. The commissioned research with seemingly trivial aims I find more difficult because, as commenters on that article pointed out, it is really difficult to decide what is trivial. Still, reporting that a biscuit company has commissioned research into biscuit dunking is either meaningless PR or else a matter of internal interest, and certainly nothing like what I expect mathematicians do for a living.

Coming back to our Warwickshire whist drive: what do I like about this story? It too presents incorrect information about mathematics and the real world, claiming that the event, four perfect hands of cards dealt, is so unlikely that it is only likely to happen once in human history (and it happened in this village hall!).

I think the difference is that the mathematics used, combinatorics and probability, appear to be correctly applied. The odds quoted, 2,235,197,406,895,366,368,301,559,999 to 1, are widely reported and I see no reason to doubt them.

The problem, then, is one of modelling assumptions. Applying a piece of mathematics to the real world involves describing the scenario, or a simplified version of it, in mathematics, solving that mathematical model and translating the solution back to the real world scenario. In this case, the description of the scenario in mathematics assumes that the cards are randomly distributed in the pack. This modelling assumption, rather than the mathematics, is where the error lies.

The result is still a bad maths news story, presenting a mathematical story as something other than what it is, but while the PR formulae are of little consequence, this incorrect application of a correct combinatorial analysis is something we can learn from.