For the benefit of overseas readers, or British readers in full-time employment, I should briefly explain the concept of daytime TV quiz phenomenon Pointless. The pinnacle of British public service broadcasting, it’s shown at 5.15pm every weekday on BBC One and is hosted by Alexander Armstrong of comedy double-act Armstrong & Miller, and Richard Osman of comedy double-act Armstrong & Osman. We shall investigate how we can use maths to analyse the show, improve our chances of winning it, and ultimately perhaps improve the show itself.
The aim of the game is in each round to give the most obscure correct answer to a given question. Each question ($Q$) has a large set of valid answers $A_Q$, questions perhaps asking contestants to name “Films starring Bruce Willis” or “Countries without an O in their name”. All the questions have been asked to 100 members of the public prior to the quiz (call this set $P$), and they each have 100 seconds to name as many examples as they can (giving rise to a set $A_p\subseteq A_Q$ for each $p\in P$. The contestant gets a point for every one of the 100 people who named their answer $a$:
\[ \mbox{score}(a) = \begin{cases}
| \{p\in P : a\in A_p \} | & \mbox{if}\ a\in A_Q \\
100 & \mbox{if}\ a\not\in A_Q.
\end{cases} \]
So an obvious answer like Die Hard or France will score a lot of points, and an obscure answer like Striking Distance or Central African Republic will score fewer points. Points are bad (hence the title) so it’s better to dredge up an obscure answer than stick with something safe. However an incorrect answer like Avatar or Mexico scores the maximum 100 points. At the end of the round the contestant with the most points is eliminated.