# You're reading: Posts Tagged: Fermi problems

### Approaching Fermi problems with the approximate geometric mean

I gave a talk on Fermi problems and a method for approaching them using the approximate geometric mean at the Maths Jam gathering in 2017. This post is a write up of that talk with some extras added in from useful discussion afterwards.

Enrico Fermi apparently had a knack for making rough estimates with very little data. Fermi problems are problems which ask for estimations for which very little data is available. Some standard Fermi problems:

• How many piano tuners are there in New York City?
• How many hairs are there on a bear?
• How many miles does a person walk in a lifetime?
• How many people in the world are talking on their mobile phones right now?

Hopefully you get the idea. These are problems for which little data is available, but for which intelligent guesses can be made. I have used problems of this type with students as an exercise in estimation and making assumptions. Inspired by a tweet from Alison Kiddle, I have set these up as a comparison of which is bigger from two unknowable things. Are there more cats in Sheffield or train carriages passing through Sheffield station every day? That sort of thing.