You're reading: Posts Tagged: Georg Cantor

Some infinities (and egos) are bigger than others

Here’s a tale of a rational (or irrational?) legal battle from the 1990s re: Cantor’s diagonal argument.

Cantor’s diagonal argument from 1891 was truly revolutionary: an ingenious way to demonstrate that no matter what proposed list of all real numbers (or, say, just those between $0$ and $1$) is put forth, it’s easy to find a number which is definitely missing from the list.

In a nutshell, Cantor was the first to show that some infinities are bigger than others.

Cantor’s diagonalisation argument for the reals is watertight, and has proved to be a model of elegance and simplicity in the century plus that has passed since it first appeared.

That didn’t stop engineer William Dilworth publishing A correction in set theory, in which he refutes Cantor’s argument, in the Transactions of the Wisconsin Academy of Sciences in 1974.