You're reading: cp’s mathem-o-blog

Integer Sequence Review Mêlée Hyper-Battle DX 2000 (Bracket 2)

Last week A002210, the decimal expansion of Khintchine’s constant, emerged victorious from Bracket 1. Now, get ready for round 2 of…

oeis review melee

Here are the rules: we’re judging each sequence on four axes: Aesthetics, Completeness, Explicability, and Novelty. We’re reviewing six sequences each week for four weeks, picking a winner from each. Then, we’ll pick one sequence from the ones we reviewed individually before this thing started, plus a wildcard. Finally, a single sequence will be crowned the Integest Sequence 2013! 

Ghost Diagrams

ghost diagram

Yet another fun toy for you. Give a computer a set of tiles defined by what their edges look like, can you fit them together? That problem is undecidable, since you can encode Turing machines as sets of tiles, but it turns out it’s fun to watch a computer try.

Ghost Diagrams asks you for a set of tiles (or it’ll make some up if you didn’t bring one) and shows you its attempts to make them fit together. It’s very pretty, and quite mesmerising. Sometimes it looks even better when you turn on the “knotwork” option.

Paul Harrison created Ghost Diagrams while writing his PhD thesis, Image Texture Tools: Texture Synthesis, Texture Transfer, and Plausible Restoration. He’s written a short blog post about the program.

Here are a few patterns I liked: 1, 2, 3, 4, 5.

via John Baez on Google+.

Integer Sequence Review Mêlée Hyper-Battle DX 2000 (Bracket 1)

After taking a couple of weeks off from reviewing integer sequences, we’ve decided to shake up the format. Prepare yourself for…

oeis review melee

We’re going to review six sequences each week for four weeks, picking a winner from each. Then, we’ll pick one sequence from the ones we’ve already reviewed individually, plus a wildcard. Finally, a single sequence will be crowned the Integest Sequence 2013!

We’re still judging each sequence on four axes: Aesthetics, Completeness, Explicability, and Novelty.

Without further ado, here we go!

Integer Sequence Review: A052486

The Online Encyclopedia of Integer Sequences contains over 200,000 sequences. It contains classics, curios, thousands of derivatives entered purely for completeness’s sake, short sequences whose completion would be a huge mathematical achievement, and some entries which are just downright silly.

For a lark, David and I have decided to review some of the Encyclopedia’s sequences. We’re rating sequences on four axes: NoveltyAestheticsExplicability and Completeness.

Following last week’s palaver, we’re going to do our best to be serious this time. Game faces on.

A052486
Achilles numbers – powerful but imperfect: writing n=product(p_i^e_i) then none of the e_i=1 (i.e. powerful(1)) but the highest common factor of the e_i>1 is 1 (so not perfect powers).

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, ...

Integer sequence review: A000959

The Online Encyclopedia of Integer Sequences contains over 200,000 sequences. It contains classics, curios, thousands of derivatives entered purely for completeness’s sake, short sequences whose completion would be a huge mathematical achievement, and some entries which are just downright silly.

For a lark, David and I have decided to review some of the Encyclopedia’s sequences. We’re rating sequences on four axes: NoveltyAestheticsExplicability and Completeness.

A000959
Lucky numbers.

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303, ...

First papers in Forum of Mathematics Pi and Sigma

I had hoped that The Future of Scholarly Mathematical Intercourse would arrive chaperoned by The Future of Publishing.

The first papers in Cambridge University Press’s new journals, Forum of Mathematics Pi and Forum of Mathematics Sigma, have been published — $p$-adic Hodge theory for rigid-analytic varieties by Peter Scholze in FoM Pi, and Generic mixing theory via vanishing Hodge models by Minhea Popa and Christian Schnell in FoM Sigma. But since the journals are more interesting for the medium they’re delivered by than their message, I’d like to take a look at the experience I had when accessing them.

Google+