You're reading: Posts By Christian Lawson-Perfect

Right answer for the wrong reason: cellular automaton on the new Cambridge North station

Cambridge North is a brand new train station, and the building’s got a fab bit of cladding with a design ‘derived from John Horton Conway’s “Game of Life” theories which he established while at Gonville and Caius College, Cambridge in 1970.’

One problem: that’s Wolfram’s Rule 135, not the Game of Life. You can tell because of the pixels.

Rule 135 is a 1-dimensional automaton: you start with a row of black or white pixels, and the rule tells you how the colour of each pixel changes based on the colours of the neighbouring pixels. The Cambridge North design shows the evolution of a rule 135 pattern as a distinct row of pixels for each time step. Conway’s Game of Life follows the same idea but in two dimensions – a pixel’s colour changes depending on the nearby pixels  in every compass direction.

Either way, it’s a lovely pattern. I suspect the designers went with Rule 135 instead of the Game of Life so that they’d get a roughly even mix of white and black pixels, which is hard to achieve under Conway’s rules.

Just in case gawping at train stations is your cup of tea, here’s a promotional video with lots of lovely panning shots of the design:

More information

Delayed £50m Cambridge North railway station opens on BBC News.

Cambridge North Station information from Atkins Group, the design consultancy responsible for the station building.

Press release from Greater Anglia trains.

The Game of Life: a beginner’s guide by Alex Bellos in the Guardian.

Brought to our attention by @Quendus on Twitter.

We want your best #proofinatoot on mathstodon.xyz

Mastodon is a new social network, heavily inspired by Twitter but with a few differences: tweets are called toots, it’s populated by tusksome mammals instead of little birds, and it’s designed to run in a decentralised manner – anyone can set up their own ‘instance’ and connect to everyone else using the GNU Social protocol.

Colin Wright and I both jumped on the bandwagon fairly early on, and realised it might be just the thing for mathematicians who want to be social: the 500 character limit leaves plenty of room for good thinkin’, and the open-source software means you can finally achieve the ultimate dream of maths on the web: LaTeX rendering!

Timetabling choreography with maths

Earlier this week my sister-in-law (“SIL” from now on) sent me an email asking for help. She’s a dance teacher, and her class need to rehearse their group pieces before their exam. She’d been trying to work out how to timetable the groups’ rehearsals, and couldn’t make it all fit together. So of course, she asked her friendly neighbourhood mathmo for help.

My initial reply was cheery and optimistic. It’s always good to let people think you know what you’re doing: much like one of Evel Knievel’s stunts, it makes you look even better on the occasions you succeed.

I’d half-remembered Katie’s friend’s Dad’s golf tournament problem and made a guess about the root of the difficulty she was having, but on closer inspection it wasn’t quite the same. I’m going to try to recount the process of coming up with an answer as it happened, with wrong turns and half-baked ideas included.

The 12th Polymath project has started: resolve Rota’s basis conjecture

Timothy Chow of MIT has proposed a new Polymath project: resolve Rota’s basis conjecture.

What’s that? It’s this:

… if $B_1$, $B_2$, $\ldots$, $B_n$ are $n$ bases of an $n$-dimensional vector space $V$ (not necessarily distinct or disjoint), then there exists an $n \times n$ grid of vectors ($v_{ij}$) such that

1. the $n$ vectors in row $i$ are the members of the $i$th basis $B_i$ (in some order), and

2. in each column of the matrix, the $n$ vectors in that column form a basis of $V$.

Easy to state, but apparently hard to prove!