*Long-time Aperiodical muse David Cushing has made a bet with us that he can give us an interesting post every Friday for the next ten weeks. Every week that he sends a post, we buy him a bar of chocolate. Every week that he doesn’t send us a post, he buys us a bar of chocolate. For his first trick, David is going to do some unnatural things with the natural numbers.*

The greatest common divisor (gcd) of two or more integers is the greatest integer that evenly divides those integers. For example, the gcd of $8$ and $12$ is $4$ (usually written as $\gcd(8,12)=4$). Two integers are called *coprime* (or “relatively prime”) if their gcd is equal to $1$.

A reasonable question to ask is,

Given two randomly chosen integers $a$ and $b$, what is the probability that $\gcd(a,b)=1$?

*[Continue reading…]
*